Sensitivity to Lysosome-Dependent Cell Death Is Directly Regulated by Lysosomal Cholesterol Content

نویسندگان

  • Hanna Appelqvist
  • Linnea Sandin
  • Karin Björnström
  • Paul Saftig
  • Brett Garner
  • Karin Öllinger
  • Katarina Kågedal
چکیده

Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lysosomal Membrane Stability and Cathepsins in Cell Death

Lysosomes are acidic organelles that are critically involved in a number of physiological processes, including macromolecule degradation, endocytosis, autophagy, exocytosis and cholesterol homeostasis. Several pathological conditions, such as cancer, neurodegenerative disorders and lysosomal storage diseases, involve lysosomal disturbances, indicating the importance of the organelle for correct...

متن کامل

The lysosome: from waste bag to potential therapeutic target.

Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered cruci...

متن کامل

A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores

The resting membrane potential (Δψ) of the cell is negative on the cytosolic side and determined primarily by the plasma membrane's selective permeability to K+ We show that lysosomal Δψ is set by lysosomal membrane permeabilities to Na+ and H+, but not K+, and is positive on the cytosolic side. An increase in juxta-lysosomal Ca2+ rapidly reversed lysosomal Δψ by activating a large voltage-depe...

متن کامل

Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2.

Expression and activity of lysosomal cysteine cathepsins correlate with the metastatic capacity and aggressiveness of tumors. Here, we show that transformation of murine embryonic fibroblasts with v-H-ras or c-src(Y527F) changes the distribution, density, and ultrastructure of the lysosomes, decreases the levels of lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in an extracellular si...

متن کامل

Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

Programmed cell death involving lysosomal membrane permeabilization (LMP) is an alternative cell death pathway induced under various cellular conditions and by numerous cytotoxic stimuli. The method presented here to quantify LMP takes advantage of the detergent digitonin, which creates pores in cellular membranes by replacing cholesterol. The difference in cholesterol content between the plasm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012